Nonlinear Dimensionality Reduction with Side Information

نویسنده

  • Ali Ghodsi Boushehri
چکیده

In this thesis, I look at three problems with important applications in data processing. Incorporating side information, provided by the user or derived from data, is a main theme of each of these problems. This thesis makes a number of contributions. The first is a technique for combining different embedding objectives, which is then exploited to incorporate side information expressed in terms of transformation invariants known to hold in the data. It also introduces two different ways of incorporating transformation invariants in order to make new similarity measures. Two algorithms are proposed which learn metrics based on different types of side information. These learned metrics can then be used in subsequent embedding methods. Finally, it introduces a manifold learning algorithm that is useful when applied to sequential decision problems. In this case we are given action labels in addition to data points. Actions in the manifold learned by this algorithm have meaningful representations in that they are represented as simple transformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره

In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...

متن کامل

Manifold Learning Towards Masking Implementations: A First Study

Linear dimensionality reduction plays a very important role in side channel attacks, but it is helpless when meeting the non-linear leakage of masking implementations. Increasing the order of masking makes the attack complexity grow exponentially, which makes the research of nonlinear dimensionality reduction very meaningful. However, the related work is seldom studied. A kernel function was fi...

متن کامل

A Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters

Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...

متن کامل

Distance-Preserving Probabilistic Embeddings with Side Information: Variational Bayesian Multidimensional Scaling Gaussian Process

Embeddings or vector representations of objects have been used with remarkable success in various machine learning and AI tasks—from dimensionality reduction and data visualization, to vision and natural language processing. In this work, we seek probabilistic embeddings that faithfully represent observed relationships between objects (e.g., physical distances, preferences). We derive a novel v...

متن کامل

Capturing Nonlinear Structure in Word Spaces through Dimensionality Reduction

Dimensionality reduction has been shown to improve processing and information extraction from high dimensional data. Word space algorithms typically employ linear reduction techniques that assume the space is Euclidean. We investigate the effects of extracting nonlinear structure in the word space using Locality Preserving Projections, a reduction algorithm that performs manifold learning. We a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006